Code: 19CS4801C

IV B.Tech - II Semester - Regular Examinations - MAY 2023

SECURE SOFTWARE ENGINEERING (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART – A

		BL	CO
1. a)	Define software assurance and software security.		CO1
1. b)	Explain the issues associated with requirements engineering for secure software.		CO1
1. c)	Describe about software security testing.		CO1
1. d)	Describe secure architecture.	L2	CO1
1. e)	Explain the use of integration of security governance in software development.	L2	CO1

PART - B

			BL	СО	Max. Marks	
	UNIT-I					
2	a)	Identify the various threats to software security.	L2	CO1	6 M	
	b)	Explain the benefits of detecting software security issues in the development process.	L2	CO1	6 M	

		OR			
3	a)	List and describe the properties of secure software.	L2	CO1	6 M
	b)	Identify the methods of specifying and	L2	CO1	6 M
		asserting desired security properties in software.			
		UNIT-II			
4	a)	Explain the SQUARE process model and	L2	CO2	6 M
•		how it is used for requirements			0 111
		engineering.			
	b)	Identify the need to prioritize security	L2	CO2	6 M
		requirements in software development.			
	ı	OR	I		
5	a)	Identify the methods used for eliciting	L2	CO2	6 M
		secure software requirements.			
	b)	Compare and contrast the elements of	L2	CO2	6 M
		secure software requirements.			
		UNIT-III			
6	a)	Demonstrate the significance of software	L2	CO2	6 M
		security in architecture and design.			
	b)	Demonstrate the software security	L2	CO1	6 M
		practices for architecture and design.			
		OR			
7	a)	Demonstrate the role of architectural risk	L2	CO1	6 M
		analysis in software security.			
	b)	Compare and contrast the security	L2	CO2	6 M
		principles and guidelines in software			
		architecture and design.			

		UNIT-IV				
8	a)	Summarize the challenges of system assembly for software security.	L2	CO3	6 M	
	b)	Illustrate the impact of security failures on system assembly.	L3	CO3	6 M	
		OR				
9	a)	Compare and contrast the functional and attacker perspectives for security analysis.	L2	CO1	6 M	
	b)	Discover the drivers of system complexity and how they affect security.	L3	CO3	6 M	
	UNIT-V					
10	a)	Demonstrate the relationship between governance and software security.	L3	CO4	6 M	
	b)	Demonstrate the adoption of an enterprise software security framework.	L3	CO4	6 M	
	OR					
11	a)	Explain the concept of how much security is enough for software development projects.	L2	CO1	6 M	
	b)	Interpret the role of project management in software security.	L3	CO4	6 M	